Integrable Systems and their Recursion Operators
نویسندگان
چکیده
In this paper we discuss the structure of recursion operators. We show that recursion operators of evolution equations have a nonlocal part that is determined by symmetries and cosymmetries. This enables us to compute recursion operators more systematically. Under certain conditions (which hold for all examples known to us) Nijenhuis operators are well defined, i.e., they give rise to hierarchies of infinitely many commuting symmetries of the operator. Moreover, the nonlocal part of a Nijenhuis operator contains the candidates of roots and coroots.
منابع مشابه
On construction of recursion operators from Lax representation
In this work we develop a general procedure for constructing the recursion operators for non-linear integrable equations admitting Lax representation. Several new examples are given. In particular we find the recursion operators for some KdV-type systems of integrable equations.
متن کاملWhy nonlocal recursion operators produce local symmetries : new results and applications
It is well known that integrable hierarchies in (1+1) dimensions are local while the recur-sion operators that generate them usually contain nonlocal terms. We resolve this apparent discrepancy by providing simple and universal sufficient conditions for a (nonlocal) recursion operator in (1+1) dimensions to generate a hierarchy of local symmetries. These conditions are satisfied by virtually al...
متن کاملIntegrable Equations on Time Scales
Integrable systems are usually given in terms of functions of continuous variables (on R), in terms of functions of discrete variables (on Z), and recently in terms of functions of q-variables (on Kq). We formulate the Gel’fand-Dikii (GD) formalism on time scales by using the delta differentiation operator and find more general integrable nonlinear evolutionary equations. In particular they yie...
متن کاملINTEGRABLE KdV SYSTEMS: Recursion Operators of Degree Four
The recursion operator and bi-Hamiltonian formulation of the Drinfeld-Sokolov system are given.
متن کاملSupersymmetric Representations and Integrable Fermionic Extensions of the Burgers and Boussinesq Equations
We construct new integrable coupled systems of N = 1 supersymmetric equations and present integrable fermionic extensions of the Burgers and Boussinesq equations. Existence of infinitely many higher symmetries is demonstrated by the presence of recursion operators. Various algebraic methods are applied to the analysis of symmetries, conservation laws, recursion operators, and Hamiltonian struct...
متن کامل